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Consciousness generally has only been developed under the pressure of the necessity of 
communication. 

 
Friedrich Nietzsche, 1882 

 
 

After all, one way of casting this whole question (the way that I usually think about it) is not “How 
do we get from the bricks, amoebas, and then apes to us?” but “How in the world could you ever 

make a conscious automaton, how could you make a conscious robot?” The answer, I think is not to 
be found in hypotheses about hardware particularly, but in software. What you want to do is design 
the software in such a way that the system has a certain set of concepts. If you manage to endow the 

system with the right sort of concepts, you create one of those logical spaces that Jaynes talks 
about.  

 
Daniel C. Dennett, 1998 
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Abstract 

The central finding of Quinn (2001) was that communication can evolve in an evolutionary robotics 
context without the use of dedicated signalling channels. Quinn simulated fairly realistic robotic 
agents controlled by neural networks and equipped with proximity sensors and wheels for 
locomotion.  The agents were set a coordinated movement task (i.e., to move their combined centre 
of mass as far as possible in a limited time frame).  Non-coordinated strategies do very poorly at 
this task, but coordination was not trivial to achieve, as the agents had no pre-given way of 
signalling to each other. Evolutionary runs revealed that coordinated overall behaviour could in fact 
emerge from a dance-like movement pattern that allowed the two agents to spontaneously establish 
“leader” and “follower” roles. Quinn’s result is very exciting because it shows the potential for 
ALife models to look at the origin of communication from genuinely non-communicative contexts. 
Other models that look at the conditions for the stability of a signalling system over a pre-defined 
signalling channel can only really refer to the evolutionary maintenance of communication rather 
than its beginnings. Although other evolutionary robotics researchers have referenced Quinn’s 
result, this has typically been in the context of interpreting some evolved behaviour in their own 
experiments. The importance of Quinn’s result for cognitive theorists interested in the evolution of 
language and social intelligence was acknowledged by Kirby et al. (2002) but this side of the work 
has not been pursued. Our project involves asking whether Quinn’s findings are general. In other 
words, we have successfully replicated Quinn’s central result but without using the particular 
simulation framework that he employed. Most of the results of our experiment match Quinn’s 
results and therefore it is suggested that the emergence of communication from non-communicative 
origins is likely to be a common evolutionary adaptation to niches that involve the coordination of 
cooperative behaviour. 
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1 – Introduction 

The emergence of intelligence and mind in living systems is a key question involving multiple 
research areas (Bedau et al. 2000). It is a grand challenge with a long history that, even today, poses 
multiple unresolved questions: what is mind, how did it evolve, and if we succeeded in reproducing 
it in an artificial system how would we know? Well-established philosophical positions (Dennett 
1997 and Chalmers 1991) and an increasing number of empirical studies support a tight connection 
between the development of mind and language. Under the assumption that the emergence of 
communication comes before the emergence of complex cognition, the problem of reproducing 
mind in an artificial system becomes much more tractable: in other words, if we can explain how 
and why agents are communicating with each other, the job of explaining their mental states 
becomes easier. 
General arguments for the idea that consciousness and mind may have a socio-linguistic origin can 
be found in many different disciplines such as psychology, anthropology, etc. However, the first 
explicit approach was published by Julian Jaynes in his book “The breakdown of the bicameral 
mind” (1976). Jaynes’s main thesis, based on psycho-historical analysis and neurobiological 
studies, states that the modern mind is a product of a highly evolved linguistic ability that was itself 
produced by increasing levels of social complexity. This evolutionary stage was not achieved until 
around 2000 B.C. and therefore humans living before that time had no sense of self-awareness. In 
such a state, the cognitive functions took place in the two hemispheres of the brain but there was no 
connection between them. In the absence of such a connection, auditory hallucinations acted as the 
missing communication channel, with half of the brain acting as a speaker and the other half 
obeying. The right hemisphere of the brain stores experiences and memories that are transmitted to 
the left hemisphere via auditory hallucinations, perceived by the subject as external voices. This 
kind of thought persisted until language acquired enough complexity to manage the internal 
dialogue in a more sophisticated way: what Jaynes calls metaphorical language. The book was 
strongly criticized when published, even though Jaynes’s hypotheses were supported by scientific 
studies in many different fields. In recent years, Jaynes’s theory has gained acceptance by many 
scientists like Daniel C. Dennett (1996), William H. Calvin (Calvin et al. 2000), Merlin Donald 
(2001) and others. New advances in functional brain imaging techniques have shown that auditory 
hallucinations take place only in the right hemisphere of the brain which explains why the 
hallucinated voices would be perceived as alien (Olin 1999, Cavanna et al. 2007). The implications 
of the bicameral mind are extremely important and impact many different scientific areas. Among 
them, two are most important in this context. The first is that mind-consciousness and language 
seem to be two sides of the same coin, and therefore approaches based on the evolution of language 
are promising ways to study the emergence of mind and consciousness. The second important 
insight from Jaynes’s work is that language and mind evolved gradually, driven by the increasing 
complexity of the environment (particularly the social environment). 
 
Thus it seems that studying the origins of language and communication may be fundamental to 
understanding the mind and its origins. In this context, computational models that mimic the origins 
of language can be very useful in order to model the evolution of mind without having to deal with 
the associated epistemological issues. From an evolutionary point of view, the origin of language is 
problematic because it contains a paradox: the existence of a signal makes no sense if nobody can 
understand it (Maynard-Smith 1997). No signal could reasonably exist without a response and no 
response could exist without a signal. This paradox can be solved if we assume that both primitive 
signals and responses were non-intentional. When an individual feels some kind of danger, it is 
likely to express anxiety with some sort of uncontrolled and meaningless behavior induced by the 
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stress of such situations. (These expressions of anxiety need not be functional in any way; they can 
be merely epiphenomenal.) Other individuals may react to this signal but not because they associate 
it with any particular meaning; simply because the signal itself happens to induce a somatic 
reaction. Something similar happens when an arbitrary sound alerts or startles us, even if that sound 
has no natural meaning in our environment. Reproducing and mimicking these uncontrolled 
behaviors outside their original context is probably one of the earliest forms of intentional and 
conceptual communication. Since the existence of a dedicated communication channel such as 
speech makes no sense at this evolutionary stage, any implicit communication that does occur must 
take place through an existing mechanism, i.e., gestures and body movements. 

Before 2001, all the existing computational models of the origins of language were designed with 
explicit communication channels. In 2001, Quinn showed that communication between agents 
could be evolved without specific communication channels. In Quinn’s model, instead of using 
fully developmental representations of the individuals, only the brain, in the form of a neural 
network, was evolved. The model was based on a population of simulated Khepera robots equipped 
with local sensors (short range IR). The individuals of the population were evaluated in pairs, 
forcing them to cooperate in order to solve a particular co-ordination problem, so the fitness of each 
individual was highly coupled with the fitness of its paired partner. The simulation showed that 
basic communication evolved from functional but non-communicative behavior in form of dance-
like movements. Another important result is the emergence of a hierarchy: one of the robots leads 
and the other follows despite none of them is intrinsically biased to adopt a particular role.  

Despite Quinn’s work not having been pursued by cognitive theorists it is very exciting because it 
shows the potential for ALife models to look at the real origin of communication, rather than just 
the conditions under which it could be maintained in a system where it was already possible. 
However, what if Quinn’s result was a freak occurrence, and turned out to be related to some detail 
of the robot’s sensory system or cognitive architecture?  We think that precisely because Quinn’s 
result is far-reaching, it is very important to establish its generality before going further.   
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2 – Simulation Model 
 
Since the aim of this work is to compare and generalize Quinn’s results, we have set up the same 
experiment in a completely different framework. Instead of using a Khepera robot simulator, a 
different hand-made 2D simulator was populated with pairs of a different type of agent. The agents 
employed are of the same size and shape as a Khepera robot but the sensors are of a different kind,  
number, and position. Since the new agents do not have to be realistic representations of a particular 
robot, motor-wheels are completely avoided and movement is just a translation and/or rotation in 
the simulated 2D world. Instead of using a continuous-time recurrent neural network to control the 
agents, as Quinn did, our model is built around a rule-based system with reinforcement learning 
(effectively a learning classifier system or LCS). In order to be able to compare both computational 
models the task the agents face should be exactly the same as in the original work: two agents must 
be capable of moving together for as great a distance as possible while staying within each other’s 
sensor range and without colliding. While using the same kind of genetic algortihm (GA) to evolve 
the population of agents, the parameters employed, as well as the way fitness is computed, are 
different. As in the original model, there are no dedicated communication channels; nor are there 
predefined roles or commands. Agents are evaluated in pairs and given a certain amount of time to 
solve the task. Evaluation is performed in discrete time steps, at every time step new sensor values 
are computed for both agents, and finally the agent behaves according to its sensory input through 
the application of a rule. Every pair of agents gets the same score depending on their performance 
while solving the problem. A selection process keeps the best agents and deletes the worst of every 
generation, with new agents being created through recombination and mutation of the successful 
individuals of the previous generation.  
  
Our strategy here is to partially replicate Quinn’s paradigm and to see whether the same results 
emerge. We believe that the differences between our computational model and Quinn’s are 
significant enough that succesful replication of the results would do much to establish the generality 
of Quinn’s central finding.  
 
2.1- Agent 
 
Quinn’s agents are fairly realistic simulations of a Khepera robot. Khepera are cylindrical-shaped 
agents with two independent motor-wheels that provide movement and rotation capacity. A set of 
eight IR proximity sensors give the robot the ability to perceive nearby objects (fig.1).  
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Figure 1. Khepera robot with eight IR sensors and 2 motor-wheels (Quinn, 2001). 
   
 
The original agent has been simplified in several ways while maintaining enough similarities to be 
able to take on the coordination task (fig.2).  
 

 

Figure 2. New agent with 10 ray-cast sensors. 
 
 
The cylindrical shape of the robot has been kept in order to make the agents rotationally invariant 
and thus avoid any simple mechanism for detecting the orientation of one agent by its partner. 
Motor-wheels are no longer simulated since the agent is not a realistic simulation of a real robot. 
Movement and rotation are just transforms on a two dimensional space; agents are moved and 
rotated around their center-point. The eight IR sensors have been replaced by ten ray-cast sensors. 
Unlike IR sensors, ray sensors have a narrower sensing area. They operate by throwing a ray of a 
certain length and infinitesimal width along the vector the sensor is pointing to. If the ray collides 
with some object the sensor reports the collision distance, otherwise the sensor reports 0. Since the 
amount of space these sensors are able to scan is significantly smaller than IR sensors, two 
additional sensors have been added, bringing the total to ten per agent. 
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2.2 – Learning Classifier System 
 
Initially developed by Holland (1976), Learning Classifier Systems (LCSs) are adaptive rule-based 
systems based on genetic algorithms (GAs) and reinforcement learning (rule scoring). While 
classical rule-based systems operate using a static rule set, LCSs are able to discover new rules 
(adaptive) with the aid of a GA. Rules are scored in some way such that the GA can evaluate the 
worth of existing rules and generate promising new ones. The LCS employed does not correspond 
exactly with any of the main types described in the literature but it keeps the general idea of 
evolving a set of rules and using a scoring method in order to fire the most promising rules when 
more than one is matched. 
 
 

 
Figure 3. Example classifier with ten sensors, nine logical operators, one arithmetic operator and one effector. 

 
 
Every agent in the population is generated with ten random classifiers. A classifier contains a set of 
sensor values (one for every sensor), several logical operators, a single arithmetic operator, and a 
single effector (fig.3). When the sensory inputs of the agent match the sensor values of a classifier, 
the classifier is “fired” and its effector applied.  
  

 
Figure 4. Logical operators detail. 

 
 

In order to know which classifier matches an agent’s sensory input at a certain time step all of them 
should be checked. The evaluation of a classifier starts comparing every agent sensor with its 
corresponding value sensor in the classifier through the classifier’s arithmetic operator (fig.5). The 
result is a chain of logical values (true or false depending if the condition is met or not).  The logical 
chain is evaluated from left to right with the classifier logical operators (e.g., TRUE AND FALSE 
NAND TRUE etc., see fig.4). If the final result is true, the classifier is added to a list of matched 
classifiers. When all the classifiers have been checked, the classifier with the highest score among 
the matched ones is fired.  
 

 

 
Figure 5. Arithmetic operators in detail. 

 
 

Firing a classifier means the agent is going to execute its effector (fig.6). If the classifier being fired 
has a FORWARD effector, the agent will move forward a certain amount of space depending on its 



Communication without dedicated signalling channels: A general finding?  

Page 9 

velocity and the size of the simulation time step.  
 
 
 

 
Figure 6. Effectors in detail. 

 
 
Classifiers are scored when fired depending on their immediate effect on the fitness of the agent at a 
specific time step (Eq.4). The effect of the action of a classifier in the fitness of an agent is just the 
difference between the current and previous time step fitness.   

 

 
Equation 5. Fitness of a classifier on a timestep. 

 
 
In some cases it is not possible to match the inputs with any of the classifiers. In such cases, a new 
random classifier is generated that matches the current sensor values. The new classifier is 
immediately added and fired. 

 
2.3 – Genetic Algorithm 
 
Efficiently exploring the classifier space is a key point if we want the agents to evolve interesting 
behaviours. A simple generational genetic algorithm has been used to evolve the populations. At the 
beginning of every run a new population of random individuals is generated. Different operators 
and effectors have the same probability to appear while the probability of a wildcard in a sensor is 
0.1. At the end of each generation the 60% of individuals with the highest fitness scores are kept 
and the remaining 40% are deleted from the population. New individuals are created by 
recombination and mutation of the survivors. Recombination is performed by picking two random 
individuals among the survivors and generating a new one by uniformly combining the classifiers 
of both parents. Variation of the new individuals is added through mutation. Mutation is performed 
by shifting by one unit (like a circular array) the index of a sensor value, operator or effector (figs. 
4, 5 and 6). Every component of the classifier (sensors, operators and effector) have an independent 
mutation probability of 0.01, therefore the mutation probability of the whole classifier is 0.21 (a 
classifier has 21 components). 
 
 
Evaluation of agents is done in pairs; every agent starts within sensor range of its partner and with a 
certain distance and angle. 
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Figure 7. Initial distance and angles of a pair of agents (Quinn, 2001). 

 
 
Every agent in the population is evaluated from a set of different initial distances and positions 
against many different partners (fig.7). The initial distances are 2, 2.5 and 3 cm while the initial 
angles are pi/2, pi, 3pi/2 and 2pi rad. Since the population size is 25 and subtracting the rotational 
duplicates every agent is evaluated exactly 48 times (24 times by 2). As Quinn stated in the original 
work, the number of evaluations with different partners in different initial configurations have an 
important impact on early stages of evolution thus in the later discovery of interesting behaviours 
 
The performance of a pair of agents at the end of an evaluation is shown in Eq.1. The fitness of 
every time step is normalized, added to the final distance parameter D, and averaged.  
 

  
Equation 1. Fitness of a pair at the end of an evaluation.  

 
 
The fitness of an agent on a certain time step (Eq.3) is computed as an exponential decay of the 
distance to the other agent. If an agent is in sensor range the fitness obtained is 1, otherwise fitness 
decreases exponentially with the distance.  
 

 
Equation 2. System distance parameter. 

 
 
 
 
 
 
 
The maximum distance is computed as the maximum linear distance an agent can achieve regarding 
its linear velocity and simulation time (Eq.4).  
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Equation 3. Fitness of a pair in an evaluation timestep. 

 
At the end of the evaluation, the final fitness is computed considering the displacement of both 
agents from their initial point (Eq.1). If both agents moved more than the target distance (25 cm.) 
the D parameter is 1, otherwise D is the quotient of the biggest distance and the target distance 
(Eq.2). 
 

 
Equation 4. Maximum linear distance. 

 
At the end of a generation the final fitness of an agent is the average of the different scores in each 
evaluation.  
One of the important differences with the original work when computing the fitness is the absence 
of a collision term. In the original computational model, the number of collisions of a pair during its 
evaluation was used as a modifier of the final fitness (more collisions imply less fitness). In the first 
stages of development of our model we did make use of a collision factor, but we realized that it 
was not strictly necessary since the agents tended to avoid collisions as the evolutionary process 
went on. The reason for that is because when two agents are colliding they cannot “see” each other 
because they are out of range (negative distance or distance less than agent’s diameter) thus the 
fitness given is 0, and therefore colliding behaviours will tend to disappear at some point through 
selection, without the need for an explicit penalty term. 
 
 
3- Analysis 
 
Eleven runs have been performed in this experiment. The different parameters employed are shown 
in figure 8. The angular velocity was found to be critical since in most evaluations one of the agents 
should be able to rotate near 2pi radians in order to align its front left sensors, thus if angular 
velocity is too small compared to the simulation time, the agents will never evolve some of the 
basic behaviours needed to accomplish the task. Other important parameters like mutation rate and 
elite size have been tuned by trial and error until finding appropriate values. The parameters related 
to the LCS were adjusted taking into account performance issues. The rest of the parameters are 
equal or similar to those employed in the original work. Note that it is central to our strategy here to 
look at whether Quinn’s basic results will hold given a different context and thus differences 
between the two experimental setups are deliberate.  
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Figure 8. Initial Parameters of the computational model, including agent physical parameters, GA parameters and simulation parameters. 
  

At the beginning of every run a new population of 25 individuals is generated, and each individual 
is initialized with a set of 10 random classifiers. Populations are allowed to evolve over 2000 
generations. Data recorded for each generation includes maximum and average fitness scores (figs.9 
and 10), the controller of the elite agent, and the elite agent’s firing pattern. The full history of the 
best pair in every generation is also recorded for further offline analysis in a 3D visualization tool 
designed for this task. Every generation took 2.63 seconds to complete. The whole experiment took 
around 20 hours on a quad core laptop running Windows 7. The memory footprint was kept very 
low consuming only around 15 Mbytes average RAM with the above simulation parameters. 
 
Among the eleven runs, 3 of them evolved perfect agents with fitness 1 (27%) and 6 of them 
evolved agents with a fitness score equal or greater than 0.975 (54%). Figure 9 shows the average 
best fitness across the 11 runs and the standard error bars. Figure 10 shows the average fitness 
across the runs and the associated standard error bars. 
 

 
 

Figure 9. Average of the maximum generation fitness of 11 runs. Error bars show the standard error each 10 generations. 
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Figure 10. Average of the mean generation fitness of 11 runs. Error bars show the standard error each 10 generations. 
 
 

3.1 – Evolved Behaviour 
 
In order to achieve the coordination task, the successful agents evolved a set of different sequences 
of movements or behaviours. Behaviours are “fired” at very specific situations and not all of them 
are needed on every evaluation; depending on the various initial positions and angles, more or less 
sequences of movements are employed. The number of classifiers involved in each behaviour is 
variable: some of them need just 1 classifier and others need 2 or even 3 classifiers. Surprisingly the 
behaviours evolved by different successful agents on different runs show important similarities.  
There are 4 different behaviours: Detection or Alignment, Forward-Backwards (FB), Orbit and 
Bullet-like.  
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During the detection step, an agent rotates counter clockwise until its front right sensors detect its 
partner (fig.11).  
 

 
Figure 11. Simulation screenshot of the Detection-Alignment stage. Both agents will rotate counter clockwise until one of them gets aligned. Red 

lines show heading vectors. Note that the lower, brown agent will detect the upper, white agent first. 
 

 
FB is a forward-backwards movement having two different functions, the first one is signalling to 
its partner its readiness and the alignment angle, the second one is “observing” if its partner has 
finished its own detection process by looking at the distance between them (fig.12).  
 

 
Figure 12. Simulation screenshot of the FB stage. The first aligned agent starts to signal its readiness moving forward and backward while the other 

agent is still rotating. Red lines show heading vectors. 
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The Orbit behaviour is the next in the sequence. Once an agent is aligned, it maintains its distance at 
a certain range, orbiting around its partner with a sequence of forward and rotation movements 
while their heading vectors remain in parallel (fig.13).  
 

 
Figure 13. Simulation screenshot of the Orbit stage. Agents synchronize moving forward and backwards while rotating to maintain their distance. 

Heading vectors remain in parallel. Red lines show heading vectors. 
 
 
While both agents are synchronized, the leading agent (first agent to align) starts going forward 
while the follower goes backwards (fig.14). 
 

 
Figure 14. Simulation screenshot of the Bullet stage. The leader agent starts going forward while the follower goes backwards. Red lines show 

heading vectors. 
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Usually the whole process is as follows: both agents start rotating counter clockwise (fig.11) and 
when the first agent gets aligned it starts going one step forward and one step backwards while its 
partner is still rotating (fig.12). When agent B gets aligned too, both agents start the final 
synchronization process, orbiting around their joint centre of mass while maintaining a constant 
distance between themselves (fig.13). Finally, the first agent to achieve alignment goes forward and 
the second backwards until the end of the simulation (fig.14). It is interesting to note that, once both 
agents have finished their alignment, their relative orientations will not change anymore; after the 
alignment agents will rotate and move but in a synchronized way (their heading vectors remain in 
parallel). The case described is one of the typical cases but other cases exist in which there is a 
change of the leadership roles while agents perform the last synchronization step (Orbit).  
 
One of the advantages when working with evolving rule-based systems (instead of neural networks 
for example) is the legibility of the evolved behaviours. In this case, most of the legibility is lost 
due the complexity of the classifiers. Therefore, the analysis has been done focusing on different 
parameters other than the classifiers, such as firing patterns. Since most evaluations are similar but 
not equal, we are going to take a look at a particular agent at a certain run (4), generation (1966) and 
evaluation (2) to accurately describe how a pair of agents behave in order to complete the task. In 
figure 15 we can see an evolved controller of an agent of fitness 1 evolved in run 4. The controller 
is composed of 13 classifiers which means that 3 classifiers have been added as a response to 
situations where no classifier could be matched. Among them, only 4 classifiers are functional, 
which means the other 9 classifiers are never used in this evaluation. Figure 13 shows which 
classifiers are fired at every simulation time step, with different colours being used to represent the 
different behaviours.  
 

 
Figure 15. Evolved controller in run 4, classifiers in bold fired during evaluation 2 of generation 1966.  
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Figure 16. Firing pattern of an evolved controller in run 4, generation 1966, evaluation 2. Colours show the different behaviours employed by the 

agent in order to complete the task. 

 

Evaluation starts with our agent not yet aligned; as a result it starts firing the Detection-Alignment 
classifier (see fig.16, green dots, and fig.15, classifier 0). That makes the agent rotate counter-
clockwise until its front left sensors detect its partner. Once the agent is aligned, the FB behaviour 
becomes active until its partner gets aligned too (see fig. 16, blue dots, and fig.15, classifiers 6 and 
7). Once both agents are aligned, their relative orientation will not change any more. In order to 
accomplish the final synchronization step, both agents have to move and rotate while keeping their 
relative orientation (see fig.16, yellow dots, and fig.15, classifiers 7, 6 and 0).  Finally, when both 
agents are synchronized, the one that was aligned first (the leader) starts to go forward, and its 
partner backwards (the follower).  

3.2 – Evolution of Behaviour 

We have seen which behaviours have been evolved in order to accomplish the coordination task and 
their role in the different stages of the coordination.  The appearance of these mechanisms takes 
place at very different points along the evolutionary timeline and they emerge as uncorrelated 
solutions to local problems whose solution increase the fitness of the pair. As evolution goes on, 
these solutions became more and more linked among themselves, eventually giving rise to the 
“global” solution.  

 



Communication without dedicated signalling channels: A general finding?  

Page 18 

 
Figure 17. Best fitness in generation (Run 4). 

 

Since classifiers are generated randomly, the behaviour of the agents in the very first generations is 
purely chaotic. In these early stages the best individuals are the ones capable of showing the widest 
range of different movements. Pairs that do not move from their initial positions, and pairs that 
move in an uncoordinated way, get very low fitness scores. Selection pressure pushes towards 
intermediate behaviours in which the agents tend to stay in sensor range while rotating. The FB 
behaviour is the first complex behaviour to emerge as a sensory-contact-maintenance strategy 
around generation 25 (fig.17). Agents producing the FB behaviour are able to move very small 
distances while still detecting each other thus making them fitter than most of the other agents.  The 
next evolutionary jump takes place around generation 100 where agents start to develop a strategy 
to maintain the distance to their partners while moving and rotating (Orbit). This new strategy 
makes the fitness grow very fast from generation 100 to generation 250. Individuals are now able to 
move their joint centre of mass across bigger distances without being penalized for the loss of 
contact with their partner. Because the Orbit strategy is by far the most complex behaviour to 
emerge (3 classifiers involved), it takes lots of evolutionary time to tune it. The amount of different 
initial positions and angles also makes the Orbit strategy hard to learn. Around generation 300 the 
different behaviours needed to accomplish the task have already been evolved but need to be 
integrated. Some individuals are good doing the FB behaviour while others are better at the Orbit 
strategy. At fitness around 0.9 most of the pairs succeed but there are still some that are not able to 
accomplish the task. Failures are mostly due to the loss of contact during the last synchronization 
process (Orbit). At some point one of the agents makes an unexpected move breaking the delicate 
equilibrium. The first perfect individuals appear in generation 400 with fitness scores greater than 
0.975. These individuals are completely in control of the different behaviours (particularly the 
Orbit) and know when to fire them.  

Due to the mutation rate, new individuals with random changes are added to the population at the 
end of each generation. Sometimes these changes make the agent stronger but sometimes they make 
it weaker. Since each individual is evaluated against every other individual in the population and 
fitness is scored in a cooperative way, occasional pairings with the weakest individuals prevent the 
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best individuals from getting a sustained fitness of 1. 

 

4 - Conclusion 

In order to argue that ALife models are constructive ways to study the origins of language and 
communication, we have reproduced the original Quinn (2001) experiment in a different context, 
and have obtained similar results. Evolutionary runs revealed that coordinated overall behaviour 
could in fact emerge from a dance-like movement pattern that allowed the two agents to 
spontaneously establish “leader” and “follower” roles. Since the emergence of a primitive form of 
communication without explicit communication channels has occurred using a completely different 
framework, it can be said that Quinn’s results look reasonably general. There is no need for highly 
sophisticated individuals nor for complex social environments to give rise to primitive forms of 
signalling. Since one of our main targets is to study the selective pressures towards the emergence 
of complex forms of language and mind through computational models, the generality of Quinn’s 
results lets us go one step further. 
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